Bounds on unparticle interactions with the electroweak sector

hep-ph: 1012.3737 Phys.Rev.D84:015010,2011

Scott Kathrein, Simon Knapen, Matt Strassler Rutgers University

Hidden CFT sectors (unparticles)

Motivation

- Calculability
- New signatures
- bonus: some model independence

Simon Knapen, Rutgers University

Hidden CFT sectors (unparticles)

Motivation

- Calculability
- New signatures
- bonus: some model independence

Signatures

Simon Knapen, Rutgers University

Calculability

H. Georgi (2007)

Calculability

H. Georgi (2007)

Calculability

$$\frac{C}{(x_1 - x_2)^{2\Delta}} \to iA_{\Delta}\theta(p_0)\theta(p^2)(p^2 + i\epsilon)^{\Delta - 2}$$

- 1. Compute σ (n massles particles)
- 2. Analytic continuation $n \rightarrow \Delta$

H. Georgi (2007)

Coupling with SM

 $\begin{array}{c|c} \partial A \partial A \mathcal{O}_u \\ \partial A \partial Z \mathcal{O}_u \\ \partial G \partial G \mathcal{O}_u \end{array}$

S. Kathrein, SK, M. Strassler (2010)

A. Delgado, M. Strassler (2010)

 $1 < \Delta < 2$

dimension 5 or higher

Diagrams

$$\frac{d^2\sigma}{dqd\cos\theta} = \frac{(4\pi)^{1-2\Delta}}{\Gamma(\Delta-1)\Gamma(\Delta)} A(\Lambda_{\gamma Z}, \Lambda_{\gamma}) e^2 q^3 s^{\Delta-3} (1 - 2\frac{q}{\sqrt{s}})^{\Delta-2} (1 + \cos^2\theta)$$

(ALEPH, OPAL, DELPHI & L3)

LEP II (\(\sigma s = 190-210 \text{ GeV}\)

(ALEPH, OPAL, DELPHI & L3)

LEP I (\(\strict{s} = 90 \text{ GeV} \)

LEP II (\(\sigma s = 190-210 \text{ GeV}\)

(ALEPH, OPAL, DELPHI & L3)

LEP I ($\sqrt{s} = 90 \text{ GeV}$)

(ALEPH, OPAL, DELPHI & L3)

LEP I (\(\strict{s} = 90 \text{ GeV} \)

LEP II (\(\sigma s = 190-210 \text{ GeV}\)

Simon Knapen, Rutgers University

Experimental Bounds

95% CL (TeV)

Δ	Λ_Z	Λ_{γ}
1	69.5	25.2
1.01	59.0	23.0
1.05	40.7	13.2
1.1	26.6	8.0
1.2	12.7	3.6
1.3	6.8	2.0
1.4	4.0	1.2
1.5	2.5	0.79
1.6	1.6	0.57
1.7	1.1	0.41
1.8	0.80	0.30
1.9	0.60	0.24
2	0.46	0.19

$$\frac{1}{\Lambda_Z} \partial A \partial Z \mathcal{O}_u$$

$$\frac{1}{\Lambda_\gamma} \partial A \partial A \mathcal{O}_u$$

Simon Knapen, Rutgers University

Theory Bounds

A. Delgado, M. Strassler (2009)

Theory Bounds

Grows with S

A. Delgado, M. Strassler (2009)

Theory Bounds

Grows with S

Conformal invariance must break down in the UV

A. Delgado, M. Strassler (2009)

Simon Knapen, Rutgers University

Application: gg -> 4Y

$$\sim \qquad \left(rac{C_3}{\Lambda_g^{\Delta_g}\Lambda_\gamma^{2\Delta_\gamma}}
ight)^2$$

$$\sim \langle \mathcal{O}_g \mathcal{O}_\gamma \mathcal{O}_\gamma \rangle$$

J. L. Feng, A. Rajaraman and H. Tu (2008)

Application: gg -> 4Y

$$\sim \qquad \left(rac{C_3}{\Lambda_g^{\Delta_g}\Lambda_\gamma^{2\Delta_\gamma}}
ight)^2$$

$$\sim \langle \mathcal{O}_g \mathcal{O}_\gamma \mathcal{O}_\gamma \rangle$$

J. L. Feng, A. Rajaraman and H. Tu (2008)

Application: gg -> 4Y

$$\sim \qquad \left(rac{C_3}{\Lambda_g^{\Delta_g}\Lambda_\gamma^{2\Delta_\gamma}}
ight)^2$$

$$\sim ~~ \langle \mathcal{O}_g \mathcal{O}_\gamma \mathcal{O}_\gamma
angle$$

J. L. Feng, A. Rajaraman and H. Tu (2008)

Bound individually:

 $\Lambda_g \rightarrow \text{Tevatron}$ (A. Delgado, M. Strassler (2009))

 $\Lambda_Y \rightarrow \text{LEP}$ (S. Kathrein, SK, M. Strassler (2010))

C₃ \rightarrow Unitarity, Conformal symmetry (F. Caracciolo and S. Rychkov (2010))

Only for 1 $< \Delta_y < 1.7$

Simon Knapen, Rutgers University

A. Delgado, M. Strassler (2009)

Simon Knapen, Rutgers University

No process that involves the hidden sector can have a rate that exceeds the rate of all such processes

A. Delgado, M. Strassler (2009)

Simon Knapen, Rutgers University

$$1 < \Delta_g < 2$$

 $1.7 < \Delta_Y < 2$

No bound on C3 available

>

A. Delgado, M. Strassler (2009)

Simon Knapen, Rutgers University

A. Delgado, M. Strassler (2009)

Simon Knapen, Rutgers University

Bound on $\sigma_{gg \to 4\gamma}$ for 14 TeV LHC

$\Delta_g \setminus^{\Delta_\gamma}$	1.05	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
1.05	2.7×10^{-6}	2.7×10^{-5}	4.8×10^{-4}	0.010	0.093	0.62	1.1	1.7	3.8	2.3	1.4
1.1	5.1×10^{-6}	5.2×10^{-5}	6.7×10^{-4}	0.014	0.13	0.89	1.4	1.6	9.6	5.9	3.7
1.2	1.5×10^{-5}	1.4×10^{-4}	1.3×10^{-3}	0.023	0.37	2.4	2.3	1.7	2.3	1.4	7.1
1.3	3.7×10^{-5}	$oxed{2.8 imes10^{-4}}$	$oxed{3.2 imes10^{-3}}$	0.031	0.33	1.7	1.2	0.91	16.	9.3	5.4
1.4	$oxed{3.3 imes10^{-5}}$	$oxed{2.5 imes10^{-4}}$	$oxed{2.3 imes10^{-3}}$	0.023	0.24	1.2	0.73	0.56	12.	7.1	4.5
1.5	$oxed{3.6 imes10^{-5}}$	$oxed{2.4 imes10^{-4}}$	$oxed{2.8 imes10^{-3}}$	0.025	0.19	0.78	0.57	0.37	9.3	5.4	3.2
1.6	$oxed{3.6 imes10^{-5}}$	$oxed{2.6 imes10^{-4}}$	$oxed{2.3 imes10^{-3}}$	0.021	0.16	0.55	0.48	0.31	7.1	4.7	2.5
1.7	$oxed{4.7 imes10^{-5}}$	$oxed{2.9 imes10^{-4}}$	$oxed{2.7 imes10^{-3}}$	0.024	0.16	0.50	0.35	0.26	5.4	3.2	2.0
1.8	$oxed{4.4 imes10^{-5}}$	$oxed{2.2 imes10^{-4}}$	$oxed{1.7 imes10^{-3}}$	0.022	0.20	0.38	0.32	0.23	4.2	2.5	1.5
1.9	$oxed{3.4 imes10^{-5}}$	$1.6 imes 10^{-4}$	$1.5 imes 10^{-3}$	0.014	0.15	0.36	0.29	0.23	3.2	2.0	1.2
2.0	$oxed{2.7 imes10^{-5}}$	$oxed{1.3 imes10^{-4}}$	$8.7 imes 10^{-4}$	0.013	0.14	0.35	0.31	0.24	2.5	1.5	0.96

Bound on $\sigma_{gg \to 4\gamma}$ for 14 TeV LHC

$oxed{\Delta_g}^{\Delta_\gamma}$	1.05	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
1.05	2.7×10^{-6}	2.7×10^{-5}	4.8×10^{-4}	0.010	0.093	0.62	1.1	1.7	3.8	2.3	1.4
1.1	5.1×10^{-6}	5.2×10^{-5}	6.7×10^{-4}	0.014	0.13	0.89	1.4	1.6	9.6	5.9	3.7
1.2	1.5×10^{-5}	1.4×10^{-4}	1.3×10^{-3}	0.023	0.37	2.4	2.3	1.7	2.3	1.4	7.1
1.3	3.7×10^{-5}	$oxed{2.8 imes10^{-4}}$	$3.2 imes 10^{-3}$	0.031	0.33	1.7	1.2	0.91	16.	9.3	5.4
1.4	$oxed{3.3 imes10^{-5}}$	$oxed{2.5 imes10^{-4}}$	$oxed{2.3 imes10^{-3}}$	0.023	0.24	1.2	0.73	0.56	12.	7.1	4.5
1.5	$3.6 imes 10^{-5}$	$oxed{2.4 imes10^{-4}}$	$oxed{2.8 imes10^{-3}}$	0.025	0.19	0.78	0.57	0.37	9.3	5.4	3.2
1.6	$oxed{3.6 imes10^{-5}}$	$oxed{2.6 imes10^{-4}}$	$oxed{2.3 imes10^{-3}}$	0.021	0.16	0.55	0.48	0.31	7.1	4.7	2.5
1.7	$oxed{4.7 imes10^{-5}}$	$oxed{2.9 imes10^{-4}}$	$oxed{2.7 imes10^{-3}}$	0.024	0.16	0.50	0.35	0.26	5.4	3.2	2.0
1.8	$oxed{4.4 imes10^{-5}}$	$oxed{2.2 imes10^{-4}}$	$\boxed{1.7\times10^{-3}}$	0.022	0.20	0.38	0.32	0.23	4.2	2.5	1.5
1.9	$3.4 imes 10^{-5}$	$1.6 imes 10^{-4}$	$oxed{1.5 imes10^{-3}}$	0.014	0.15	0.36	0.29	0.23	3.2	2.0	1.2
2.0	$oxed{2.7 imes10^{-5}}$	$oxed{1.3 imes10^{-4}}$	$8.7 imes 10^{-4}$	0.013	0.14	0.35	0.31	0.24	2.5	1.5	0.96

Not accounted for here

T. Aliev, M. Frank, I. Turan (2009)

Simon Knapen, Rutgers University

Outlook

Discovery through Unparticle production (Jet + MET)

Simon Knapen, Rutgers University

Outlook

Discovery through Unparticle production (Jet + MET)

$$\hat{\sigma} \sim \frac{1}{\hat{s}} \left(\frac{\hat{s}}{\Lambda^2} \right)^{\Delta}$$

Bounds improve rapidly with increasing \$

CMS collaboration, June 2011

Simon Knapen, Rutgers University

Conclusions

- Bounds on unparticle interactions with electro-weak gauge bosons range from Λ ~
 200 GeV - 50 TeV
- Four photon production through 3-points function can not be discovery channel
- Our bounds will improve dramatically with LHC data

Simon Knapen, Rutgers University

SM couplings

$$\begin{split} &\frac{1}{\Lambda^{\Delta-2}}HH^{\dagger}\mathcal{O}_{u}, \quad \frac{1}{\Lambda^{\Delta-1}}\bar{f}Hf'\mathcal{O}_{u}, \quad \frac{1}{\Lambda^{\Delta-1}}\bar{f}H\gamma_{5}f'\mathcal{O}_{u}, \quad \frac{1}{\Lambda^{\Delta}}G_{\alpha\beta}G^{\alpha\beta}\mathcal{O}_{u}, \\ &\frac{1}{\Lambda^{\Delta-1}}\bar{f}\gamma_{\mu}f\mathcal{O}_{u}^{\mu}, \quad \frac{1}{\Lambda^{\Delta-1}}\bar{f}\gamma_{\mu}\gamma_{5}f\mathcal{O}_{u}^{\mu}, \\ &-\frac{1}{4}\frac{1}{\Lambda^{\Delta}}\bar{f}\left(\gamma_{\mu}\overleftrightarrow{D}_{\nu}+\gamma_{\nu}\overleftrightarrow{D}_{\mu}\right)f\mathcal{O}_{u}^{\mu\nu}, \quad \frac{1}{\Lambda^{\Delta}}G_{\mu\alpha}G_{\nu}^{\ \alpha}\mathcal{O}_{u}^{\mu\nu} \end{split}$$

(Unitarity)

$$\begin{array}{ll} \Delta_{\mathcal{O}_u} & \geq 1 \\ \Delta_{\mathcal{O}_u^{\mu}} & \geq 3 \\ \Delta_{\mathcal{O}_u^{\mu\nu}} & \geq 4 \end{array}$$

G. Mack (1977)

B. Grinstein, K. Intriligator, I Rothstein (2008)

Simon Knapen, Rutgers University

SM couplings

$$\frac{1}{\Lambda^{\Delta-2}}HH^{\dagger}\mathcal{O}_{u}, \quad \frac{1}{\Lambda^{\Delta-1}}\bar{f}Hf'\mathcal{O}_{u}, \quad \frac{1}{\Lambda^{\Delta-1}}\bar{f}H\gamma_{5}f'\mathcal{O}_{u}, \quad \frac{1}{\Lambda^{\Delta}}G_{\alpha\beta}G^{\alpha\beta}\mathcal{O}_{u}, \\ \frac{1}{\Lambda^{\Delta-1}}\bar{f}\gamma_{\mu}f\mathcal{O}_{u}^{\mu}, \quad \frac{1}{\Lambda^{\Delta-1}}\bar{f}\gamma_{\mu}\gamma_{5}f\mathcal{O}_{u}^{\mu}, \\ -\frac{1}{4}\frac{1}{\Lambda^{\Delta}}\bar{f}\left(\gamma_{\mu}\overleftrightarrow{D}_{\nu}+\gamma_{\nu}\overleftrightarrow{D}_{\mu}\right)f\mathcal{O}_{u}^{\mu\nu}, \quad \frac{1}{\Lambda^{\Delta}}G_{\mu\alpha}G_{\nu}^{\ \alpha}\mathcal{O}_{u}^{\mu\nu}$$

(Unitarity)

$$\begin{array}{ll} \Delta_{\mathcal{O}_u} & \geq 1 \\ \Delta_{\mathcal{O}_u^{\mu}} & \geq 3 \\ \Delta_{\mathcal{O}_u^{\mu\nu}} & \geq 4 \end{array}$$

 $\frac{\partial A \partial A \mathcal{O}_u}{\partial A \partial Z \mathcal{O}_u}$ $\frac{\partial G \partial G \mathcal{O}_u}{\partial G \partial G \mathcal{O}_u}$

S. Kathrein, SK, M. Strassler (2010)

A. Delgado, M. Strassler (2010)

G. Mack (1977)

B. Grinstein, K. Intriligator, I Rothstein (2008)

Simon Knapen, Rutgers University

Coupling with W's

$$\frac{\lambda_1}{\Lambda_1^{\Delta}} B_{\alpha\beta} B^{\alpha\beta} \mathcal{O}_u + \frac{\lambda_2}{\Lambda_2^{\Delta}} W_{\alpha\beta}^3 W^{3\alpha\beta} \mathcal{O}_u$$

$$\frac{\lambda_{\gamma Z}}{\Lambda_{\gamma Z}^{\Delta}} \equiv \frac{\lambda_2}{\Lambda_2^{\Delta}} - \frac{\lambda_1}{\Lambda_1^{\Delta}}$$

$$\frac{\lambda_{\gamma}}{\Lambda_{\gamma}^{\Delta}} \equiv c_{\theta}^2 \frac{\lambda_1}{\Lambda_1^{\Delta}} + s_{\theta}^2 \frac{\lambda_2}{\Lambda_2^{\Delta}}$$

